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0 Introduction. Groups and symmetry

Group Theory can be viewed as the mathematical theory that deals with symmetry, where
symmetry has a very general meaning. To illustrate this we will look at two very different
kinds of symmetries. In both case we have ‘transformations’ that help us to capture the
type of symmetry we are interested in. We then have the ‘objects’ that we are analysing
and to each object we will associate a ‘symmetry group’ that captures the symmetric
properties of the object in precise mathematical terms.

I. Isometric symmetry in R2

Transformations: Isometries.

An isometry on the plane is a bijection f : R2 → R2 that preserves distances.

Objects: Figures in the place (that is subsets of the plane).

The symmetry group of a figure A: For any figure(subset) A of the plane, we let
GA be the set of all isometries that preserve the figure (as a set). This is a group with
composition as the group multiplication. We call it the symmetry group of A.

Example

→

↑

3 · · · · · · · · · · · · ·1··
··
··
··
··
·2

··
··
··
··
··
·

A

For the equilateral triangle A, GA consists of three rotations r, r2 and r3 = e = id, with
r being a counterclockwise rotation of 120 degrees around the center of A, and three
reflections s1, s2 and s3 with respect to the three symmetry axes of A, through the points
1, 2 and 3 respectively.

We can now write a multiplication table for GA:
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e r r2 s1 s2 s3

e e r r2 s1 s2 s3

r r r2 e s3 s1 s2

r2 r2 e r s2 s3 s1

s1 s1 s2 s3 e r r2

s2 s2 s3 s1 r2 e r
s3 s3 s1 s2 r r2 e

Every equilateral triangle in the plane has a group G of isometries that contains three
rotations and three reflections as above. It depends on the triangle what exactly these
rotations and reflections are but the algebraic structure is always going to be as in the
multiplication table above. So the symmetry is captured in the algebraic structure of G.

In fact the group above is ismorphic to S3, the group of all permutations of 1, 2, 3. This
is because the 6 elements in GA permute the corner points of the triangle and all the
6 = 3! permutations of S3 occur: r and r2 correspond to (1 2 3) and (1 3 2) and the three
reflections s1, s2 and s3 correspond to the (2 3), (1 3) and (1 2).

The following questions now arise naturally:

(Q1) What symmetries are out there?
(Q2) What are their properties?

Or, translating these into formal mathematics questions:

(q1) What groups are there? (Classification)
(q2) What is their structure like? (Structure theory)

The symmetry we have just looked at is of geometric nature and groups and geome-
try have some strong links. For example, one can think of Euclidean geometry in the
plane as the theory that studies properties that are invariant under isometries (i.e. angle,
length, area, triangle, ...). During the 19th century there was a development of a number
of different geometries (i.e. affine geometry, projective geometry, hyperbolic geometry,
....) and Felix Klein (1872) made the general observation that, like Euclidean geometry
can be characterised by the group of isometries, each geometry can be characterised by
some group of transformations. The origin of abstract group theory goes however further
back to Galois (1811-1832) and the problem of solving polynomial equations by algebraic
methods. This we turn to next.

II. Arithmetic symmetry in C. The origin of group theory.

Transformations: Automorphisms.

A automorphism on C is a bijective function f : C → C that preserves the addition
and the multiplication:

f(a+ b) = f(a) + f(b)

f(ab) = f(a)f(b).
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Claim. Any automorphism f fixes all the elements in Q.

Proof. Firstly f(0) = 0 and f(1) = 1 as

f(0) + 0 = f(0) = f(0 + 0) = f(0) + f(0)
f(1) · 1 = f(1) = f(1 · 1) = f(1) · f(1).

and cancellation gives what we want. Notice that we can cancel by f(1) as it can’t be 0
(f is bijective and 0 is already taken as a value). Next suppose that n ≥ 1 is an integer.
Then

f(n) = f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

) = f(1) + f(1) + · · ·+ f(1)︸ ︷︷ ︸
n

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

= n

and f(n) = n for all positve integers n. Before going further we observe that f has the
property that f(−a) = −f(a) and also that f(1/a) = 1/f(a) whenever a 6= 0. The reason
for this is the following

f(a) + f(−a) = f(a+ (−a)) = f(0) = 0
f(a) · f(1/a) = f(a · 1/a) = f(1) = 1.

Using this we can now finish the proof of the claim. Firstly for n > 0 we have f(−n) =
−f(n) = −n which shows that f fixes any integer. Finally if q = a/b for some integers
a, b, where b 6= 0, then

f(q) = f(a · 1/b) = f(a) · f(1/b) = f(a) · 1/f(b) = a/b = q

and we have proved the claim. 2

Objects: Polynomials in Q[x].

Let
P = anx

n + an−1x
n−1 + · · ·+ a0

be a polynomial over Q with distinct roots x1, . . . , xn.

Claim. Any automorphism f permutes the complex roots of P .

Proof. We need to show that if t is a root then f(t) is also a root. But this follows
from

0 = f(0)

= f(ant
n + an−1t

n−1 + · · ·+ a0)

= f(ant
n) + f(an−1t

n−1) + · · ·+ f(a0)

= f(an)f(t)n + f(an−1)f(t)n−1 + · · ·+ f(a0)

= anf(t)n + an−1f(t)n−1 + · · ·+ a0

= P (f(t))

where the 2nd last equality follows from the fact that the coefficients are rational num-
bers. 2
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We have seen that any isomorphism f must permute the roots x1, . . . , xn of P . Hence f
induces a permutation in Sn (if we identify 1, 2, . . . , n with x1, . . . , xn).

The symmetry group of the polynomial P . (Also called the Galois group of P ): We
let

GP = {σ ∈ Sn : σ is induced by an isomorphism }.

GP is then the symmetry group of P .

(By saying that σ ∈ Sn is induced by the automorphism f : C→ C means that σ(i) = j
if and only if f(xi) = xj).

Example 1. Determine GP where P = x2 − 3x+ 2.

Solution. P = x2 − 3x + 2 = (x − 1)(x − 2) has only rational roots so every iso-
morphism must fix these and thus induce the trivial permutation on the roots. Thus
GP = {id}.

Example 2. Determine GP where P = x4 − 1.

Solution. The polynomial P = x4 − 1 has the roots x1 = 1, x2 = −1, x3 = i and
x4 = −i. Here all isomorphisms must fix 1 and −1. This leaves the possibility of swap-
ping i and −i, and the isomorphism f on C that maps z to z̄ does that (recall that
a+ b = a+ b and ab = a · b which implies that f is a isomorphism). Thus

GP = {α, id}

where

α =

(
x1 x2 x3 x4

x1 x2 x4 x3

)
or, under the identification of 1, 2, 3, 4 with x1, x2, x3, x4,

α =

(
1 2 3 4
1 2 4 3

)
i.e. α swaps x3 and x4 (or 3 and 4).

Remark. In general GP is a subgroup of Sn and thus thas at most n! elements (in
fact |GP | divides |Sn| = n! by Lagrange’s Theorem).

We say that a polynomial P is solvable by radicals if its roots can be expressed using
only the coefficients, the arithmetic operations and extracting roots. That any quadratic
ax2 + bx+ c is solvable by radicals is for example a consequence of the formula:

x =
−b±

√
b2 − 4ac

2a
.

Such formulas for solving the cubics and the quartics were discovered during the 16th cen-
tury but despite much effort the quintic continued to remain a challenge. The question
was not settled until 1824 when the Norwegian mathematican Niels Henrik Abel demon-
strated that the quintic is not in general solvable by radicals. The French mathematician

4



Évariste Galois (1811-1832) proved this independently and went further by finding a suf-
ficient and necessary condition under which a given polynomial is solvable by radicals.
In doing so he developed a new mathematical theory of symmetry, namely group theory.
His famous theorem is the following:

Theorem (Galois). A polynomial P is solvable by radicals iff GP is solvable.

For a group to be solvable means having a structure of a special kind. You will see the
precise definition later in the course.

Fact. For each positive integer n there exists a polynomial Pn of degree n such that
GPn = Sn (all the permutations of the n roots).

Theorem. Sn is solvable iff n ≤ 4. (We will prove this later in the course).

Corollary. For any n ≥ 5 there exists a polynomial of degree n (namely Pn) that is
not solvable by radicals.
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1 Definitions and basic properties

I. The group axioms and some examples of groups.

We start by recalling the definition of a group.

Definition. A group is a pair (G, ∗), where G is a set, ∗ is a binary operation and
the following axioms hold:

(a) (The associative law)

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(b) (Existence of an identity) There exists an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

(c) (The existence of an inverse) For each a ∈ G there exists an element b ∈ G such that

a ∗ b = b ∗ a = e.

Remark. Notice that ∗ : G×G→ G is a binary operation and thus the ‘closure axiom’:
a, b ∈ G⇒ a ∗ b ∈ G is implicit in the definition.

Definition. We say that a group (G, ∗) is abelian or commutative if a ∗ b = b ∗ a for
all a, b ∈ G.

Remarks.(1) Recall that the identity e is the unique element in G with the property
given in (b). To see this suppose we have another identity f . Using the fact that both of
these are identities we see that

f = f ∗ e = e.

we will usually denote this element by 1 (or by 0 if the group operation is commutative).

(2) the element b ∈ G as in (c) is unique. To see this suppose that c is another in-
verse to a. Then

c = c ∗ e = c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b.

We call this unique element b, the inverse of a. It is often denoted a−1 (or −a when the
group operation is commutative).

(3) If it is clear from the context what the group operation ∗ is, one often simply refers
to the group G rather then the pair (G, ∗).
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Some examples of groups. (1) Let X be a set and let Sym (X) be the set of all
bijective maps from X to itself. Then Sym (X) is a group with respect to composition,
◦, of maps. This group is called the symmetric group on X and we often refer to the
elements of Sym (X) as permutations of X. When X = {1, 2, · · · , n} the group is often
denoted Sn and called the symmetric group on n letters.

(2) Let (R,+, ·) be any ring. Then (R,+) is an abelian group. This includes for ex-
ample the group of integers (Z,+) and the fields Q,R,C with repect to addition. It also
includes, for any positive integer n, the group of integers modulo n (Zn,+).

(3) Let again (R,+, ·) be any ring with unity 1. Then the set of all invertible elements
(the units), R∗, is a group with respect to the ring multiplication ·. This group is referred
to as the group of units of R. This includes Q∗, R∗,C∗ and Z∗n for any positive integer.

(4) Let V be a finite dimensional vector space over a field K. Consider the ring End (V )
of all linear operators α : V → V . Here the group of units is denoted GL(V ) and called
the general linear group on V .

(5) Let K be a field and let Mn(K) be the ring of all n×n matrices over K. The group of
units here is denoted GLn(K) and called the general linear group of n×n matrices over K.

Remarks. (1) We will see later that any group G can be viewed as a subgroup of
some group of permutations Sym (X).

(2) One can see that any group G can be viewed as a subgroup of the group of units
of some ring R. We will see this later at least in the case when G is finite.

II. Subgroups and Lagrange’s Theorem.

Definition. Let G be a group with a subset H. We say that H is a subgroup of G
if the following two conditions hold.

(a) 1 ∈ H,
(b) If a, b ∈ H then ab, a−1 ∈ H.

Recall. One can replace (a) and (b) with the more economical:

(a)’ H 6= ∅,
(b)’ If a, b ∈ H then ab−1 ∈ H.

Remark. It is not difficult to see that one could equivalently say that H is a sub-
group of G if H is closed under the group multiplication ∗ and that H with the induced
multiplication of ∗ on H is a group in its own right. So subgroups are groups contained
within G that inherit the multiplication from G.

Notation. We write H ≤ G or G ≥ H for ‘H is a subgroup of G’.
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Cosets as equivalence classes. Suppose G is a group with a subgroup H. We de-
fine a relation ' on G as follows:

x ' y iff x−1y ∈ H.

This relation is an equivalence relation. To see this we need to see that it is reflexive,
symmetric and transitive. Firstly it is reflexive as x−1x = 1 ∈ H implies that x ' x.
To see that it is symmetric suppose x ' y. Then x−1y ∈ H and as H is a subgroup it
follows that y−1x = (x−1y)−1 ∈ H and thus y ' x. Finally to see that the relation is
transitive notice that if x ' y and y ' z then x−1y, y−1z ∈ H. Being a subgroup, H
is closed under the group multiplication and thus x−1z = (x−1y)·(y−1z) ∈ H. Thus x ' z.

Notice that x ' y if and only if x−1y ∈ H if and only if y ∈ xH. Hence the equiva-
lence class of x is [x] = xH, the left coset of H in G.

Theorem 1.1 (Lagrange) Let G be a finite group with a subgroup H. Then |H| divides
|G|.

Proof Using the equivalence relation above, G gets partitioned into pairwise disjoint
equivalence classes, say

G = a1H ∪ a2H ∪ · · · ∪ arH

and adding up we get

|G| = |a1H|+ |a2H|+ · · ·+ |arH| = r · |H|.

Notice that the map from G to itself that takes g to aig is a bijection (the inverse is the
map g 7→ a−1

i g) and thus |aiH| = |H|. 2

Remark. If we had used instead the relation x ' y iff xy−1 ∈ H, we would have
had [x] = Hx. Hence G also partions into a pairwise disjoint union of right cosets. (Re-
call that in general the partions into right cosets and into left cosets are different).

Examples. (1) The subsets {1} and G are always subgroups of G.

(2) The subset Cn = {a ∈ C : an = 1} is a subgroup of (C, ·). In fact 1n = 1 and
if a, b ∈ Cn then (ab)n = anbn = 1 and (a−1)n = (an)−1 = 1. Thus both the subgroup
criteria (a) and (b) hold.

(3) H = {id, (1, 2)} is a subgroup of S3. Clearly (a) holds as id ∈ H and direct in-
spection shows that (b) holds as well.

Definition. Let G be a group and a ∈ G. The cyclic subgroup generated by a is
〈a〉 = {an : n ∈ Z}.

Remark. We have that 1 = a0 ∈ 〈a〉. We also have that 〈a〉 is closed under the
group multiplication and taking inverses since an · am = an+m and (an)−1 = a−n. Hence
〈a〉 is a subgroup of G. It is clearly the smallest subgroup of G that contains a.

Definition. We say that a group G is cyclic if there exists an element a ∈ G where
G = 〈a〉.

8



Definition. Let G be a group and a ∈ G. The order of a, denoted o(a), is defined
as follows. If there is a positive integer m such that am = 1 then o(a) is the smallest such
integer. If there is on the other hand no such positive integer we say that a is of infinite
order and write o(a) =∞.

Remarks.(1) If o(a) = n <∞, then

〈a〉 = {1 = a0, a1, . . . , an−1}

where the elments 1, a, a2, . . . , an−1 are distinct. To see why the elements are different
suppose for a contraction that ar = as for some 0 ≤ r < s ≤ n − 1. But then as−r = 1
where 0 < s − r ≤ n − 1 < n. This however contradicts the fact that n = o(a) is the
smallest positive integer where an = 1.

(2)Thus o(a) = n = |〈a〉|. Note also that am = 1 iff n|m. It follows that ar = as if
and only if n|(r − s). (The structure of the group is just like that of Zn).

(3) Let G be a finite group and a ∈ G. As o(a) = |〈a〉| that divides |G| by Lagrange, we
have from Remark (2) that a|G| = 1.

Let G = 〈a〉 be a finite cyclic group. By Lagrange any subgroup has a order d that
is a divisor of n. For cyclic groups there is conversely exactly one subgroup of order d for
each divisor d.

Proposition 1.2 Let G = 〈a〉 be a finite cyclic group of order n and let d be a divisor of
n. The subgroup 〈an/d〉 is the unique subgroup of order d.

Proof. Let H be a subgroup of order d. As 〈an/d〉 has also d elements it suffices to show
that H ⊆ 〈an/d〉. Let am ∈ H. By Remark (3) above we have 1 = am|H| = amd and, by
Remark (2), it follows that n = o(a) divides md. Hence n/d divides m, say m = r · (n/d),
and am = (an/d)r ∈ 〈an/d〉. 2

Proposition 1.3 Let p be a prime number and G be a group such that |G| = p. The
group G is cyclic.

Proof As p ≥ 2 there has to be some element a 6= 1 in G. Then |〈a〉| ≥ 2 and (by
Lagrange’s Theorem) |〈a〉| divides |G| = p. As p is a prime we must have |〈a〉| = p and
thus 〈a〉 = G. 2.

III. Congruences and quotient groups.

Definition. Let G be a group. A congruence on G is an equivalence relation ' on
G that satisfies:

a1 ' a2, b1 ' b2 ⇒ a1b1 ' a2b2.

Remark. This extra condition is needed to introduce a well defined multiplication on
the equivalence classes [a] · [b] = [ab].
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Lemma 1.4 Let G be a group with congruence '. Then N = [1] is a subgroup of G that
satisfies:

g−1Ng ⊆ N

for all g ∈ G. Furthermore a ' b if and only if a−1b ∈ N .

Proof. To see that N is a subgroup, we go through the subgroup criteria. As ' is
reflexive we have 1 ' 1 and thus 1 ∈ N = [1]. It remains to see that N is closed under
group multiplication and taking inverses. For the first of these, notice that of a, b ∈ N
then a, b ' 1 and the congruence property gives us that ab ' 1 · 1 = 1. Thus ab ∈ N .
To see that N is closed under taking inverses, suppose that a ∈ N then a ' 1 and the
congruence property gives us that 1 = a−1a ' a−1 · 1 = a−1. This shows that a−1 ∈ N .

It remains to see that N has the requested extra property. So suppose a ∈ N . Then
a ' 1 and the congruence property implies that g−1ag ' g−1 ·1 ·g = 1. Hence g−1ag ∈ N .
Finally we have a ' b iff 1 = a−1a ' a−1b iff a−1b ∈ [1] = N . 2

Definition. A subgroup H of G is said to be a normal subgroup if

g−1Hg ⊆ H ∀g ∈ G.

Notation. We write H �G or G�H for ‘H is a normal subgroup of G’

Lemma 1.5 Let G be a group with a normal subgroup N and define a relation ' on G
by x ' y if and only if x−1y ∈ N . Then ' is a congruence on G and [a] = aN . In
particular [1] = N .

Proof We have seen in the proof of Lagrange’s Theorem that ' is an equivalence relation
and that [a] = aN . It remains to see that the congruence property holds. So suppose
that a1 ' a2 and b1 ' b2. This means that a−1

1 a2, b
−1
1 b2 ∈ N . We want to show that

a1b1 ' a2b2. But this follows from

(a1b1)−1(a2b2) = b−1
1 (a−1

1 a2)b2 = (b−1
1 b2) · b−1

2 (a−1
1 a2)b2.

As N is normal we have that b−1
2 (a−1

1 a2)b2 ∈ N and thus the equation above shows that
(a1b1)−1a2b2 is a product of two elements from N . As N is a subgroup of G, this product
is in N . Hence a1b1 ' a2b2. 2

Remark. It follows from Lemmas 1.4 and 1.5 that there is a 1-1 correspondence be-
tween congruences on G and normal subgroups of G.

Remarks. (1) We write often more shortly Ha instead of a−1Ha and call it a conju-
gate of H by a. Similarly if x ∈ G then xa = a−1xa is a conjugate of x by a.

(2) Let x, a, b ∈ G and 1 be the identity element in G. Then

xab = (ab)−1xab = b−1(a−1xa)b = (xa)b

x1 = 1−1 · x · 1 = x.

It follows then that if H ≤ G we also have Hab = (Ha)b and H1 = H.
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(3) Notice that Ha is a subgroup of G: firstly 1 = a−1 · 1 · a = 1a ∈ Ha and then
xaya = a−1xaa−1ya = a−1(xy)a = (xy)a and (xa)−1 = (a−1xa)−1 = a−1x−1a = (x−1)a.
In fact the group Ha has the same structure as H. (The conjugation by a is a bit like a
renaming or an ornament).

Lemma 1.6 The following are equivalent:

(a) H �G,
(b) Ha = H for all a ∈ G,
(c) Ha = aH for all a ∈ G.

Proof (b)⇒(a) is obvious. To prove (a)⇒(b), notice that (a) implies in particular that
for any a ∈ G we have Ha−1 ⊆ H and therefore

H = He = Ha−1a = (Ha−1

)a ⊆ Ha.

This gives Ha = H. It now only remains to show that (b)⇔(c). But this is easy

a−1Ha = H ⇔ a · a−1Ha = aH ⇔ Ha = aH.

This finishes the proof. 2

Definition. Let G be a group with a subgroup H. The number of left cosets of H
in G is called the index of H in G and is denoted [G : H].

Remark. Suppose that G is finite. Recall from the proof of Lagrange’s Theorem that
we get a partition of G into a union of pairwise disjoint union of left cosets

G = a1H ∪ a2H ∪ · · · ∪ anH.

As each of the cosets have order |H|, it follows that |G| = r · |H|. Hence [G : H] = r =
|G|/|H|. (Likewise we have that G can be written as a pairwise disjoint union of right
cosets and the same reasoning shows that their number is also |G|/|H|.

Examples. (1) Every subgroup N of an abelian group G is normal (since then obvi-
ously aN = Na for all a ∈ G).

(2) The trivial subgroup {1} and G itself are always normal subgroups of G.

(3) If H is a subgroup of G such that [G : H] = 2 then H � G (since the left cosets
are H,G \H which are also the right cosets. Hence the right cosets are the same as the
left cosets).

The quotient group G/N . Let G be a group with a congruence ' and a corresponding
normal subgroup N . Let

G/N = { [a] = aN : a ∈ G}

with a binary operation [a] · [b] = [ab] (that is aN · bN = abN). Notice that this is well
defined as ' is a congruence. To see that G/N is a group with respect to this binary
operation we check that the three group axioms hold.

Firstly there is an identity element, namely [1] = N as [1] · [a] = [1 · a] = [a] and
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[a] · [1] = [a · 1] = [a].

Secondly every element [a] ∈ G/N has an inverse, namely [a−1] since [a] · [a−1] = [a ·a−1] =
[1] and [a−1] · [a] = [a−1 · a] = [1].

Finally associativity in G/N follows from associativity in G:

[a] · ([b] · [c]) = [a] · [bc] = [a(bc)] = [(ab)c] = [ab] · [c] = ([a] · [b]) · [c].

Remark. That the binary operation on G/N is well defined followed from the fact
that ' is a congruence. There is another way of seeing this using the fact that N is
normal in G. First we introduce set products in the natural way. So if X, Y ⊆ G then we
let X · Y = {xy : x ∈ X, y ∈ Y }. Then, using this set product as the action on G/N , we
get

[a] · [b] = aN · bN = abNN = abN = [ab].

Hence the binary operation (being the same as the set multiplication) is well defined.
Notice that we used the fact that N is normal when applying Nb = bN . Also N ·N ⊆ N
as N is a subgroup and N = N · {1} ⊂ N ·N as 1 ∈ N . Thus N ·N = N .

Remark. Notice that the size of the group G/N is [G : N ] and when G is finite this is
the same as |G|/|N |.

Examples. (1) We always have G � G. The congruence with respect to the normal
subgroup G is x ' y ⇔ x−1y ∈ G. As the latter holds for any x, y ∈ G we are identifying
all the elements. Hence

G/G = {[1]} = {G}

is the trivial group with only one element.

(2) The trivial subgroup N = {1} is always normal in G. The congruence in this case is
given by x ' y ⇔ x−1y ∈ N ⇔ x−1y = 1⇔ y = x. Thus

G/N = {{a} : a ∈ G}.

The structure is just like the structure of G: {a} · {b} = {ab}. (The curly bracket is there
just as a decoration).

(3) Let G = S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} and N = A3 = {id, (1 2 3), (1 3 2)}.
Here [G : N ] = 2 and thus G/N has two elements. Notice that these are

N = {id, (1 2 3), (1 3 2)} = [id] = [(1 2 3)] = [(1 3 2)]

and
(1 2)N = {(1 2), (2 3), (1 4)} = [(1 2)] = [(1 3)] = [(2 3)].

(So here we have identified all the even permutations and likewise all the odd permuta-
tions). G/N = {1 = [id], a = [(1 2)]}. This is the unique group structure with 2 elements:
1 · a = a · 1 = a, 1 · 1 = 1 and a · a = 1.
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IV. Homomorphisms and isomorphisms

Definition. Let G,H be groups. A map φ : G → H is a homomorphism if φ(ab) =
φ(a)φ(b) for all a, b ∈ G.

Furthermore φ is an isomorphism if it is bijective. A group G is said to be isomor-
phic to H if there is an isomorphism φ : G→ H. We then write G ∼= H.

Remarks. (1) If φ : G → H and ψ : H → K are homomorphisms then their com-
position ψ ◦ φ : G → K is also a homomorphism. This is simply because ψ(φ(ab)) =
ψ(φ(a) · φ(b)) = ψ(φ(a)) · ψ(φ(b)). In particular if G ∼= H and H ∼= K then G ∼= K.

(2) If φ : G → H is an isomorphism then φ−1 : H → G is also an isomorphism. To
see this let a = φ(x), b = φ(y) ∈ H. Then

φ−1(a · b) = φ−1(φ(x) · φ(y)) = φ−1(φ(xy)) = xy = φ−1(a) · φ−1(b).

In particular if G ∼= H then also H ∼= G.

(3) If G ∼= H then there is no structural difference between G and H. You can think of
the isomorphism φ : G → H as a renaming function. If ab = c then φ(a), φ(b), φ(c) are
the new a, b, c. We want the new c to be the product of the new a and b. This means
φ(ab) = φ(a)φ(b).

Lemma 1.7 Let φ : G→ H be a homomorphism, then

(a) φ(1G) = 1H ,
(b) φ(a−1) = φ(a)−1.

Proof (a) We have

1H · φ(1G) = φ(1G) = φ(1G · 1G) = φ(1G) · φ(1G)

and cancellation gives 1H = φ(1G).

(b) Using (a) we have

φ(a−1)φ(a) = φ(a−1a) = φ(1G) = 1H

and
φ(a)φ(a−1) = φ(aa−1) = φ(1G) = 1H .

Hence φ(a−1) is the inverse of φ(a). 2

Examples (1) Let N be a normal subgroup of G. The map φ : G→ G/N, a 7→ [a] = aN
is a homomorphism as φ(ab) = [ab] = [a] · [b] = φ(a) · φ(b).

(2) Let R+ be the set of all the postive real numbers. There is a (well known) iso-
morphism φ : (R,+) → R+, ·) given by φ(x) = ex. (As ex+y = exey. This is a bijective
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homomorphism).

Lemma 1.8 Let φ : G→ H be a homomorphism, then

(a) A ≤ G ⇒ φ(A) ≤ H.
(b) B ≤ H ⇒ φ−1(B) ≤ G.
(c) B �H ⇒ φ−1(B) �G.

Proof To prove (a) and (b) we apply the usual three subgroup criteria, i.e. the subset
in question needs to contain the identity and be closed under multiplication and taking
inverses. For (a) this follows from 1H = φ(1G), φ(x)φ(y) = φ(xy) and φ(x)−1 = φ(x−1).
Notice that, as A ≤ G, we have 1G ∈ A and xy, x−1 ∈ A whenever x, y ∈ A. Sim-
ilarly for proving (b), it is first clear that 1G ∈ φ−1(B) as φ(1G) = 1H ∈ B (since
B ≤ H). Furthermore, if x, y ∈ φ−1(B), then φ(x), φ(y) ∈ B. As B ≤ H, it follows that
φ(xy) = φ(x)φ(y) ∈ B and φ(x−1) = φ(x)−1 ∈ B. This shows that xy, x−1 ∈ φ−1(B).

For the proof of part (c) suppose furthermore that the subgroup B of H is normal. Let
x ∈ φ−1(B) and g ∈ G. Then φ(g−1xg) = φ(g)−1φ(x)φ(g) ∈ φ(g)−1Bφ(g) ⊆ B. Hence
g−1xg ∈ φ−1(B). This shows that φ−1(B) is normal in G. 2.

V. The Isomorphism Theorems

Let N �G and consider the homomorphism φ : G→ G/N, a 7→ [a] = aN . Let

SN(G) = {H : N ≤ H ≤ G}

and
S(G/N) = {R : R ≤ G/N}.

Consider the map Ψ : SN(G)→ S(G/N), Ψ(H) = φ(H) = H/N .

Remark. Thus Ψ(H) is the set φ(H) = {φ(a) : a ∈ H}.

Theorem 1.9 (Correspondence Theorem). Ψ is a bijection and furthermore H � G iff
Ψ(H) �G/N .

Proof. (Ψ is injective). Let N ≤ H,K ≤ G and suppose that Ψ(H) = H/N is equal to
Ψ(K) = K/N . Then

H =
⋃

xN∈H/N

xN =
⋃

xN∈K/N

xN = K.

(Ψ is surjective). Let R be a subgroup of G/N . Then, by Lemma 1.8, φ−1(R) is a subgroup
of G (that clearly contains N as all the elements in N map to the identity element of
G/N that is in R) and as φ is surjective, we have

Ψ(φ−1(R)) = φ(φ−1(R)) = R.

(Notice that N ⊆ H implies that N = g−1Ng ⊆ g−1Hg and thus the subgroup g−1Hg is
also in SN(G)). This shows that Ψ is a bijection. Finally we are going to use

Ψ(g−1Hg) = φ(g−1Hg) = φ(g)−1φ(H)φ(g) = φ(g)−1Ψ(H)φ(g).
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We have that H � G iff g−1Hg = H for all g ∈ G. As Ψ is a bijection this holds
iff Ψ(g−1Hg) = Ψ(H) for all g ∈ G. In view of the identity above this holds iff
φ(g)−1Ψ(H)φ(g) = Ψ(H) for all g ∈ G. But as φ is surjective this is true iff r−1Ψ(H)r =
Ψ(H) for all r ∈ G/N that is iff Ψ(H) �G/N . 2

The picture that is good to keep in mind is the following.

...

H

aN

bN

eN = N

Ψ(H) = H/N
bN
...
aN
eN



Ψ(H) is the collection of all the cosets of N in H and H is the pairwise disjoint union of
these cosets. Thus if we know H we get Ψ(H) as the cosets of N in H and if we know
Ψ(H) we get H as the union of the cosets in Ψ(H).

Definition. Let φ : G→ H be a group homomorphism. The image of φ is

imφ = {φ(g) : g ∈ G}

and the kernel of φ is
kerφ = {g ∈ G : φ(g) = 1}.

Notice that as G ≤ G, it follows from Lemma 1.8 that imφ = φ(G) is a subgroup of H.
Also, as {1}�H it follows from Lemma 1.8 that kerφ = φ−1({1}) is a normal subgroup
of G.

Theorem 1.10 (1st Isomorphism Theorem). Let φ : G→ H be a homomorphism. Then
Imφ ≤ H, Kerφ�G and

G/Kerφ ∼= Imφ.

Proof As we have noted previously, it follows from Lemma 1.8 that Imφ ≤ H and
Kerφ � G. Define a map Φ : G/Kerφ → Imφ by setting Φ([a]) = φ(a). This map is
clearly surjective. We next show that it is well defined and injective. This follows from

Φ([a]) = Φ([b]) ⇔ φ(a) = φ(b)

⇔ φ(a−1b) = φ(a)−1φ(b) = 1

⇔ a−1b ∈ Kerφ

⇔ [a] = [b]

To show that Φ is an isomorphism, it remains to show that Φ is a homomorphism. This
follows from

Φ([a] · [b]) = Φ([ab]) = φ(ab) = φ(a)φ(b) = Φ([a]) · Φ([b]).
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This finishes the proof. 2

Theorem 1.11 (2nd Isomorphism Theorem). Let H ≤ G and N � G. Then HN ≤ G,
H ∩N �H and

H/(H ∩N) ∼= HN/N.

Proof We apply the 1st Isomorphism Theorem. Consider the homomorphism

φ : G→ G/N, a 7→ aN.

Let ψ be the restriction of φ on H. This gives us a homomorphism ψ : H → G/N . By
the 1st Isomorphism Theorem we have that Imψ = {hN : h ∈ H} is a subgroup of G/N .
By the correspondence theorem we have that this subgroup is of the form U/N , where U
is a subgroup of G that is given by

U =
⋃
h∈H

hN = HN.

Thus Imψ = HN/N . It remains to identify the kernel. The identity of G/N is the coset
eN = N . Then for h ∈ H, we have

ψ(h) = N ⇔ hN = N

⇔ h ∈ N.

As h ∈ H this shows that the kernel of ψ is H∩N . Thus by the 1st Isomorphism Theorem,
H ∩N �H and

H/H ∩N = H/Kerψ ' Imψ = HN/N

This finishes the proof. 2

Theorem 1.12 (3rd Isomorphism Theorem). Suppose that H,N �G and N ≤ H. Then
H/N �G/N and

(G/N)/(H/N) ∼= G/H.

Proof Again we apply the 1st Isomorphism Theorem. This time on the map

φ : G/N → G/H aN 7→ aH.

Let us first see that this is well defined. If aN = bN then a−1b ∈ N ⊆ H and thus
aH = bH. It is also a homomorphism as

φ(aN · bN) = φ(abN) = abH = aH · bH = φ(aN) · φ(bN).

We clearly have that Imφ = G/H and it remains to identify the kernel. The identity in
G/H is the coset eH = H and then

φ(aN) = H ⇔ aH = H

⇔ a ∈ H.

The kernel thus consists of the cosets aN of G/N where a ∈ H. That is the kernel is
H/N . The 1st Isomorphism Theorem now gives us that H/N�G/N (that we had proved
already in the proof of the correspondence theorem anyway) and that

(G/N)/(H/N) = (G/N)/Kerφ ∼= Imφ = G/H.

This finishes the proof. 2
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2 Direct products and abelian groups

I. Direct products.

Closure properties for the set of normal subgroups of G.

(1) If H,K � G then H ∩ K � G. To see that this is a subgroup notice that 1 ∈ H
and 1 ∈ K as both are subgroups and hence 1 ∈ H ∩ K. Now let a, b ∈ H ∩ K. As
H ≤ G and a, b ∈ H we know that ab, a−1 ∈ H. Similarly as K is a subgroup, containing
a, b, we have ab, a−1 ∈ K. Thus ab, a−1 ∈ H ∩K. To see H ∩K is normal notice that for
g ∈ G, we have (H∩K)g ⊆ Hg = H and (H∩K)g ⊆ Kg = K and thus (H∩K)g ⊆ H∩K.

(2) We also have that ifH,K�G thenHK�G: It follows from the 2nd Isomorphism Theo-
rem that HK ≤ G. To see that HK is normal notice that we have (HK)g = HgKg = HK
for g ∈ G.

Normal products. We have seen that if H,K � G then HK � G. Inductively it
follows that if H1, . . . , Hn�G, then H1 · · ·Hn�G. Since HiHj = HjHi for 1 ≤ i < j ≤ n,
we have

Hσ(1) · · ·Hσ(n) = H1 · · ·Hn

for all σ ∈ Sn.

Lemma 2.1 Let H and K be finite subgroups of G where K is normal. Then

|HK| = |H| · |K|
|H ∩K|

.

Proof By the 2nd Isomorphism Theorem, we have

HK/K ∼= H/H ∩K.

Taking the orders on both sides gives. |HK|/|K| = |H|/|H ∩ K|. The result follows
immediately from this. 2.

Remark. In particular it follows that |HK| = |H| · |K| if and only if H ∩K = {1}.

Definition Let H1, . . . , Hn �G. The product H1 · · ·Hn is said to be an (internal) direct
product of H1, . . . , Hn if

Hi ∩
∏
j 6=i

Hj = {1}

for i = 1, . . . , n.

Remark. Suppose 1 ≤ i < j ≤ n. As Hj ≤
∏

k 6=iHk, we know in particular that
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Hi ∩Hj = {1} it follows from Exercise 1 on sheet 2 that all the elements in Hi commute
with all the elements in Hj. So if xi ∈ Hi then

xσ(1) · · ·xσ(n) = x1 · · · xn

for all σ ∈ Sn.

Proposition 2.2 Let H1, . . . , Hn �G and suppose that H1H2 · · ·Hn is an internal direct
product.

(a) Every element a ∈ H1 · · ·Hn is of the form

a = x1x2 · · ·xn

for unique xi ∈ Hi, i = 1, . . . , n.
(b) If xi, yi ∈ Hi for i = 1, . . . , n then

x1 · · ·xn · y1 · · · yn = (x1y1) · · · (xnyn).

Proof (a) If x1 · · ·xn = y1 · · · yn for some xi, yi ∈ Hi, then for each 1 ≤ i ≤ n

xi
∏
j 6=i

xj = yi
∏
j 6=i

yj

and thus
y−1
i xi = (

∏
j 6=i

yj) · (
∏
j 6=i

xj)
−1

and thus y−1
i xi is in Hi ∩

∏
j 6=iHj = {1} and xi = yi.

(b) Using the fact that yi commutes with xj when j > i we have

x1x2 · · ·xny1y2 · · · yn = x1y1x2 · · ·xny2 · · · yn
...

= (x1y1)(x2y2) · · · (xnyn).

This finishes the proof. 2

Remarks. (1) The last Proposition shows that the structure of the internal direct prod-
uct H1H2 · · ·Hn only depends on the structure of H1, . . . , Hn. Each element is like an
n-tuple (x1, . . . , xn) and we multiply two such componentwise. Later we will formalise
this when we introduce the external direct product.

(2) Notice that it follows from part (a) of last proposition that for an internal direct
product H1H2 · · ·Hn, we have

|H1 · · ·Hn| = |H1| · · · |Hn|.

The internal direct products are useful for helping us sorting out the structure of a given
group. Next we discuss external direct products that are useful for constructing new
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groups from old groups.

Definition. Let H1, . . . , Hn be groups. The (external) direct product of H1, . . . , Hn is
the cartesian set product

H1 × · · · ×Hn

with multiplication

(a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn).

Remark. Since each Hi is a group it is immediate that the direct product is also a group
with identity (1H1 , . . . , 1Hn). The inverse of (a1, a2, . . . , an) is (a−1

1 , a−1
2 , . . . , a−1

n ). The
associatative law follows from the fact that it holds in each component.

Next result tells us that the internal direct product is the same as the external direct
product.

Lemma 2.3 Suppose G is the internal direct product of H1, . . . , Hn. Then

G ∼= H1 × · · · ×Hn.

Proof (See sheet 4)

II. Abelian groups.

In this section, we will use additive notation. Thus we use + for the group operation, −a
for the inverse of a and 0 for the group identity. We also talk about direct sums rather
than direct products.

Notice that every subgroup of an abelian groupG is normal. Thus for subgroupsH1, H2, . . . , Hn

of G we have that H1 + · · ·+Hn is an internal direct sum of H1, . . . , Hn if

Hi ∩
∑
j 6=i

Hj = {0}

for i = 1, . . . , n. The external direct sum of H1, . . . , Hn is also denoted

H1 ⊕H2 ⊕ · · · ⊕Hn

instead of H1 ×H2 × · · · ×Hn.

The cyclic group generated by a, 〈a〉 = {na : n ∈ Z}, will often be denoted Za.

Definition. Let G be any abelian group and let p be a prime. The subset

Gp = {x ∈ G : o(x) is a power of p}

is called the p-primary subgroup of G.

Lemma 2.4 Gp is a subgroup of G.
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Proof As the order of 0 is 1 = p0, it is clear that 0 ∈ Gp. Now let x, y ∈ Gp with
orders pn, pm. Then pmax{n,m}(x + y) = pmax{n,m}x + pmax{n,m}y = 0 + 0 = 0 and thus
o(x + y) divides pmax{n,m} and is thus also a power of p. Hence x + y ∈ Gp and as
o(−x) = o(x) = pn we also have that −x ∈ Gp. Hence Gp ≤ G. 2

Remark. If G is finite then |Gp| must be a power of p. This follows from Exercise
4(a) on sheet 3. If there was another prime q 6= p that divided |Gp| then by this exercise
we would have an element in Gp of order q but this contradicts the definition of Gp.

Definition. An abelian group is said to be a p-group if G = Gp.

Next lemma reduces the study of finite abelian groups to the study of finite abelian
groups of prime power order.

Lemma 2.5 Let G be a finite abelian group where |G| = pr11 · · · prnn for some positive
integers r1, . . . , rn. Then G is the internal direct sum of Gp1 , Gp2 , . . . , Gpn. Furthermore
|Gpi
| = prii .

Proof Let x ∈ G. Then by Lagrange’s Theorem o(x) divides |G|, say o(x) = ps11 · · · psn
n .

The numbers

q1 =
o(x)

ps11

, . . . , qn =
o(x)

psn
n

are then coprime and we can find integers a1, . . . , an such that a1q1 + · · ·+anqn = 1. Thus

x = (a1q1 + · · ·+ anqn)x = a1q1x+ · · ·+ anqnx

and as psi
i (aiqix) = aio(x)x = 0 we have that aiqix ∈ Gpi

. Thus G = Gp1 + · · ·+Gpn . To
see that the sum is direct let x ∈ Gpi

∩
∑

j 6=iGpj
, say

x = xi =
∑
j 6=i

xj

where the order of xk is pek . Then pei
i x = 0 and also (

∏
j 6=i p

ej

j )x = 0 and the order of
x divides two coprime numbers. Hence o(x) = 1 and thus x = 0. This shows that the
intersection is trivial and hence we have a direct sum.

By the remark made before the Lemma, we know that |Gpi
| = psi

i for some integer
si. Since G is the direct sum of Gp1 , . . . , Gpn , we have

pr11 · · · prnn = |G| =
n∏
i=1

|Gpi
| = ps11 · · · psn

n .

Comparison of the two sides gives si = ri, i = 1, . . . , n. 2

Remark. Thus G ∼= Gp1 ⊕ · · · ⊕Gpn . And the study of finite abelian groups reduces to
understanding the finite abelian p-groups.

Definition. Let G be a finite group. The exponent of G is the smallest positive in-
teger n such that xn = 1 for all x ∈ G. (Or with additive notation nx = 0 for all x ∈ G).
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Abelian groups of exponent p as vector spaces. Let G be a finite abelian group of
exponent p. Then px = 0 for all x ∈ G and the group addition induces a scalar multipli-
cation from the field Zp as follows. For [m] = m + Zp we let [m]x = mx = x+ · · ·+ x︸ ︷︷ ︸

m

.

This is well defined and turns G into a vector space over Zp. One also has that a subset
H of G is a subgroup of the group G if and only if H is a subspace of the vector space G.
(See Sheet 5, exercise 1 for the details).

Lemma 2.6 Let G be a finite abelian group of exponent p. Then G can be written as an
internal direct sum of cyclic groups of order p.

Proof Viewing G as a vector space over Zp we know that it has a basis x1, . . . , xn as all
these elements are non-trivial and as the exponent of G is p, they must all be of order p.
To say that these elements form a basis for the vector space G is the same as saying that
we have a direct sum of one dimensional subspaces

G = Zpx1 + · · ·+ Zpxn.

This happens if and only if

Zpxj ∩
∑
k 6=j

Zpxk = {0}

for j = 1, . . . , n. But as Zpxk = Zxk, this is the same as saying that

Zxj ∩
∑
k 6=j

Zxk = {0}

for j = 1, . . . , n which is the same as saying that

G = Zx1 + · · ·+ Zxr

is an internal direct sum of cyclic subgroup of order p. 2.

Remark. If we have the direct sum G = Zx1 + · · · + Zxn then |G| = pn. The num-
ber of direct summands is thus unique and is logp(|G|).

Lemma 2.7 We have that sum H1 + · · ·+Hn is direct if and only if for any xi ∈ Hi, i =
1, . . . , n we have

x1 + · · ·+ xn = 0⇒ x1 = . . . = xn = 0.

Proof To prove this, notice first that a direct sum would have this property by Proposition
2.2. Conversely, suppose that this property holds and take some xi =

∑
j 6=i(−xj) in

Hi ∩
∑

j 6=iHj. Then x1 + · · · + xn = 0 and thus x = xi = 0 by the property. So the
intersection is trivial and the sum is direct. 2.

Proposition 2.8 Let G be a finite abelian p-group. G can be written as an internal
direct sum of non-trivial cyclic groups. Furthermore the number of cyclic summands of
any given order is unique for G.

Proof (See later).

From Lemma 2.5 and Proposition 2.8 we can derive the main result of this chapter.
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Theorem 2.9 (The Fundamental Theorem for finite abelian groups). Let G be a finite
abelian group. G can be written as an internal direct sum of non-trival cyclic groups of
prime power order. Furthermore the number of cyclic summands for any given order is
unique for G.

Remark. Suppose that G = Zx1 + Zx2 + · · · + Zxn is a direct sum of cyclic group of
prime power order. Notice that

G = Zxσ(1) + Zσ(2) + · · ·+ Zσ(n)

for all σ ∈ Sn.

Convention. We order the cyclic summands as follows. First we order them with respect
to the primes involved in ascending order. Then for each prime we order the summands
in ascending order.

Example. If G is finite abelian group written as an internal direct sum

G = Zx1 + Zx2 + Zx3 + Zx4 + Zx5

of cyclic groups of orders 9, 2, 4, 3, 4, then we order the summands so that they come
instead in orders 2, 4, 4, 3, 9. Notice then that G is isomorphic to Z2⊕Z4⊕Z4⊕Z3⊕Z9.

Remarks. (1) This discussion shows that any finite abelian group is isomorphic to a
unique external direct sum

Zp
e1
1
⊕ · · · ⊕ Zper

r

where p1 ≤ p2 ≤ · · · ≤ pr and if pi = pi+1 then ei ≤ ei+1.

(2) Finding all abelian groups of a given order n = pm1
1 · · · pmr

r , where p1 < p2 < · · · < pr
are primes, reduces then to the problem of finding, for i = 1, . . . , r, all possible partitions
(pe1i , . . . , p

el
i ) of the number pmi

i . This means that

1 ≤ e1 ≤ e2 ≤ . . . ≤ el and e1 + · · ·+ el = mi.

Example. Find (up to isomorphism) all abelian groups of order 72.

Solution. We have 72 = 23 · 32. The possible partitions of 23 are (8), (2, 4), (2, 2, 2)
whereas the possible partions for 32 are (32), (3, 3). We then have that the abelian groups
of order 72 are

Z8 ⊕ Z9, Z2 ⊕ Z4 ⊕ Z9, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9,
Z8 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3.

We now turn to the proof of Proposition 2.8. First as a preparation here are two sub-
groups that will play an important part in the proof.

Some useful subgroups. Let G be a finite abelian group. The following subgroups
are going to play an important role in the proof of our next main result. That these are
subgroups is shown on exercise sheet 3 (using multiplicative notation).
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PG = {px : x ∈ G}, G[p] = {x ∈ G : px = 0}.
As G[p] is of exponent p it can be viewed as a vector space over Zp.

Proof of Proposition 2.8 First we deal with the existence of such a decomposition
into a direct sum.

Let the exponent of G be pn. We prove the proposition by induction on n. If n = 1
then the result holds by Lemma 2.6. Now suppose that n ≥ 2 and that the result holds
for smaller values of n. The exponent of pG is pn−1 and by the induction hypothesis we
have that pG is a direct sum of non-trivial cyclic groups, say

pG = Zpx1 + · · ·+ Zpxr. (1)

Suppose the order of xi is pmi (notice that mi ≥ 2 as pxi 6= 0). Then pm1−1x1, . . . , p
mr−1xr

are in G[p]. As G[p] is of exponent p, it can be viewed as a vector space over Zp and we
can then extend to a basis (pm1−1x1, . . . , p

mr−1xr, xr+1, . . . , xs) for G[p]. It follows that
we have a direct sum

G[p] = Zpmi−1x1 + · · ·+ Zpmr−1xr + Zxr+1 + · · ·+ Zxs. (2)

We now want to show that G = Zx1 + · · ·+ Zxs is a direct sum.

First we show that x1, . . . , xs generate G. Let x ∈ G. Then by (1)

px = a1px1 + · · ·+ arpxr

for some integers a1, . . . , ar. Thus x − (a1x1 + · · · + arxr) is in G[p] and thus by (2) in
Zx1 + · · ·+ Zxs. Hence x is also in Zx1 + · · ·+ Zxs.

It remains to see that the sum G = Zx1 + · · ·+ Zxs is direct. Suppose that

a1x1 + · · ·+ asxs = 0.

We want to show that a1x1 = . . . = asxs = 0. Now multiplying by p we get

a1px1 + · · ·+ arpxr = 0

and since the Zpx1 + · · · + Zpxr is direct, it follows that pa1x1 = . . . = parxr = 0. Thus
pmj−1 divides aj for j = 1, . . . , r, say aj = bjp

mj−1. So we have

b1p
m1−1x1 + · · ·+ brp

mr−1xr + ar+1xr+1 + . . .+ asxs = 0.

As G[p] = Zpm1−1x1 + · · · + Zpmr−1xr + Zxr+1 + · · · + Zxs is direct we must have
b1p

m1−1x1 = . . . = brp
mr−1xr = ar+1xr+1 = . . . = asxr = 0. That is a1x1 = . . . = asxs = 0.

This finishes the inductive proof.

To deal with uniqueness part, write G as a direct sum of cyclic groups of p-power or-
der

G = Za1 + · · ·+ Zar + Zb1 + · · ·+ Zbs
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where a1, . . . , ar have order at most pm−1 whereas b1, . . . , bs have order at least pm (notice
that as G is a p-group the orders of all these elements are powers of p). Then

|p
m−1G

pmG
| = |Zp

m−1b1| · · · |Zpm−1bs|
|Zpmb1| · · · |Zpmbs|

=
o(pm−1b1)

o(pmb1)
· · · o(p

m−1bs)

o(pmbs)
.

Notice that, in a finite abelian p-group, we have that if a 6= 0 then o(pa) = 1
p
o(a) (If pl is

the order of a then pl−1 is the order of pa). The formula above thus implies that

|p
m−1G

pmG
| = ps

and thus the number of summands of order at least pm is logp |p
m−1G
pmG
|. Similarly the

number of summands of order at least pm+1 is logp | p
mG

pm+1G
|. The number of summands of

order exactly pm is thus the difference

logp |
pm−1G

pmG
| − logp |

pmG

pm+1G
|.

This shows that the number of summands of order exactly pm is an invariant that does
not depend on what the decomposition is. 2
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3 Composition series and solvable groups

I. Simple groups. The primes of group theory.

We now introduce an important notion, namely that of a simple group. These can be
thought of as the atoms or the primes of group theory.

Definition. A group G is simple if G 6= {1} and the only normal subgroups of G
are {1} and G.

Example. The abelian simple groups are the cyclic groups of prime order. See exer-
cise sheet 6.

Remark. Look at Exercise 5 on sheet 4. According to this exercise we have that if
G is a direct product of non-abelian simple groups, then the simple factors are unique up
to order (and not only up to isomorphism!). Thus we had here something analogous to
a unique prime factorisation of a number. When we also allow for abelian simple factors
the result would be similar and we get that the factors are unique (this time up to iso-
morphism). The problem is that not all finite groups can be written as direct products
of simple groups. Example is S3 and Z4. It turns out that any finite group can still in a
different sense been built out of simple groups. To describe what this means we need to
talk first about composition series.

Definition. Let G be a group.

(1) A subnormal series of G is a series

{1} = H0 ≤ H1 ≤ · · · ≤ Hn = G

where Hi−1 �Hi, i = 1, . . . , n. The quotient groups

H1/H0, H2/H1, . . . , Hn/Hn−1

are called the factors of the series.

(2) A subnormal series is called a composition series if

H1/H0, H2/H1, . . . , Hn/Hn−1

are simple groups, called the composition factors.

Example. Let G = Za be a cyclic group of order 6. Then the subgroup 3G is of
order 2 and index 3 and we get a subnormal series

{0} ≤ 3G ≤ G
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with factors 3G/{0} ∼= Z2 and G/3G ∼= Z3. Similarly the subgroup 2G is a subgroup of
order 3 and index 2 that gives us another subnormal series

{0} ≤ 2G ≤ G

with factors 2G/{0} ∼= Z3 and G/2G ∼= Z2. In fact these are both composition series as
the factors are simple. Notice that the composition factors turn out to be the same (up
to order). In fact this is always true.

The Jordan-Hölder Theorem. Suppose that a group G has composition series

{1} = H0 < H1 < . . . < Hn = G

and
{1} = K0 < K1 < . . . < Km = G.

Then n = m and the composition factors H1/H0, . . . , Hn/Hn−1 are the same (up to order)
as K1/K0, . . . , Kn/Kn−1.

Remarks. (1) Let G be a group with a normal subgroup N . It follows from the corre-
spondence theorem that G/N is simple iff G 6= N and there is no normal subgroup M in
G such that N < M < G.

(2) Suppose that for some group G we have a subnormal series

{1} = H0 < H1 < . . . < Hn = G

that is not a composition series. Then some quotient Hm/Hm−1 is not simple and by
remark (1) there exists some subgroup K of G such that Hm−1 < K < Hm where K is
normal in Hm. Notice also that (as Hm−1 is normal in Hm) Hm−1 is normal in K. By
adding K, we thus get a subnormal series that is longer.

(3) Let G be a finite group. It has a subnormal series (for example {1} < G). Ap-
plying remark (2) we can continue adding terms while the series is not a composition
series. Each time we get a longer series and as G is finite, this procedure must terminate
in a composition series for G. Hence every finite group has a composition series.

Examples (1) G be an internal direct product of S1, . . . , Sn where Si is simple. The
map

φ : S1 · · ·Sn → Sn, a1a1 · · · an 7→ an

is a group homomorphism with kernel S1 · · ·Sn−1. By the first Isomorphism Theorem we
have

S1 · · ·Sn
S1 · · ·Sn−1

∼= Sn

we thus get a compostion series

{0} < S1 < S1S2 < . . . < S1 · · ·Sn = G

with composition factors S1···Si

S1···Si−1

∼= Si. This shows that there exists at least one group

with S1, . . . , Sn as composition factors. (We can take S1 × S2 × · · · × Sn).
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(2) Let n be a positive intger. All finite abelian groups of order n have the same com-
position factors (Sheet 6). So normally there are a number of different groups that have
some given composition factors S1, . . . , Sn.

The Jordan Hölder theorem suggests the following possible strategy for finding all fi-
nite groups.

(a) Find all the simple groups.
(b) For any given choice S1, . . . , Sr of simple groups find all the possible groups G whose
composition factors are S1, . . . , Sr.

Remarks. (1) Classifying all finite groups is generally concidered too hard. These are
too rich and for a given choice of simple groups S1, . . . , Sn there is a great variety of ways
of obtaining a group G with these as composition factors. As the number, n, of simple
factors increases this becomes more and more complicated.

(2) On the other hand (a) is done! This is one of the real triumphs of 20th century
mathematics. The classification result was announced in 1981. The proof is a collection
of a number of journal articles by many different mathematicians and runs over 10000
journal pages!

According to the classification of finite simple groups, these are

(1) The cyclic groups of prime order, Zp,
(2) The alternating groups, An, n ≥ 5,
(3) The simple groups of Lie type (a number of infinite families that crop up in a geomet-
rical context)
(4) Twenty six exceptional groups that do not belong to any of the infinite families above.

The groups in (1) are dealt with on sheet 6. In the next chapter we deal with (2).

II. Solvable groups

Definition. We say that a group is solvable if it has a subnormal series with abelian
factors.

Examples (1) Every abelian group is solvable.
(2) We have that S3 has a composition series

{1} < A3 < S3

with factors A3/{1} ∼= Z3 and S3/A3
∼= Z2. As the factors are abelian S3 is solvable.

Remark. We will see on sheet 6 that S4 is solvable. In next chapter we will how-
ever see that Sn is not solvable for n ≥ 5. This is the underlying reason for the fact that
we can’t solve the quintic by radicals.

Proposition 3.1 A finite group G is solvable if and only its composition factors are cyclic
of prime order.
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Proof (⇐). A composition series with abelian factors is a subnormal series with abelian
factors.

(⇒). Suppose G is finite solvable group with subnormal series

{1} = H0 < H1 < . . . < Hn = G

where the factors are abelian. If this series is not a composition series, then some factor
Hi/Hi−1 is not simple and we can insert some K, such that Hi−1 < K < Hi, to get a
longer series. Notice that K/Hi−1 ≤ Hi/Hi−1 and thus abelian. Also we have by the 3rd
Isomorphism Theorem that

Hi/K ∼=
Hi/Hi−1

K/Hi−1

that is a quotient of the abelian group Hi/Hi−1 and thus abelian. Thus the new longer
series also has abelian factors. Continuing adding terms until we get a composition series,
gives us then a composition series with abelian factors and thus factors that are cyclic of
prime order. 2

How common are finite solvable groups? In fact surprisingly common. We mention
two famous results.

Theorem A (Burnside’s (p,q)-Theorem, 1904) Let p, q be prime numbers. Any group of
order pnqm is solvable.

Theorem B. (The odd order Theorem, Feit-Thompson, 1963). Any group of odd or-
der is solvable.

(This is really a magnificent result. The proof is almost 300 pages and takes up a whole
issue of a mathematics journal. Thompson received the Field’s medal for his contribu-
tion).

28



4 Permutation groups and group actions

I. Permutation groups and the simplicity of An, n ≥ 5

Convention. We will work with permutations from right to left. So if α, β ∈ Sn then for
αβ, we apply β first and then α.

Lemma 4.1 Let α ∈ Sn. Then

α(i1 i2 . . . im)α−1 = (α(i1) α(i2) . . . α(im)).

Proof First suppose that k = α(j) is not in {α(i1), α(i2), · · · , α(im)}. Then j is not in
{i1, i2, · · · , im} and

α(i1 i2 . . . im)α−1(α(j)) = α(i1 i2 . . . im)(j) = α(j).

This shows that α(i1 i2 . . . im)α−1 fixes the elements outside {α(i1), α(i2), · · · , α(im)}.
It remains to show that this map cyclically permutes α(i1), α(i2), · · · , α(im). But

α(i1 i2 · · · im)α−1(α(ir)) = α(i1 i2 · · · im)(ir) = α(ir+1)

where im+1 is interpreted as i1. This finishes the proof. 2

Orbits. Let i ∈ {1, . . . , n}. Recall that the α-orbit containing i is the subset {αr(i) : r ∈
Z} and that {1, . . . , n} partitions into a pairwise disjoint union of α-orbits.

Cycle structure. Suppose that the orbits of α ∈ Sn are O1, O2, . . . , Or of sizes l1 ≥
l2 ≥ · · · ≥ lr. We then say that α has a cycle structure of type (l1, . . . , lr).

Example. Let

α =

(
1 2 3 4 5 6 7 8
3 5 4 2 1 7 6 8

)
= (1 3 4 2 5)(6 7)(8).

Then α is of type (5, 2, 1).

Definition. Let G be a group and x ∈ G. The conjugacy class of G containing x is
xG = {xg : g ∈ G}.

On sheet 6, we see that G is a pairwise disjoint union of its conjugacy classes.

By Lemma 4.1, we have that if α is a permutation of some type (l1, . . . , lr), then the
conjugacy class αSn consists of all permutations of that type. It follows also that if a
normal subgroup N contains a permutation of type (l1, l2, . . . , lr) then it contains all per-
mutations of that type.
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Example. [(1 2)(3 4)]S4 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Remarks. We have the following formula (check it)

(i1 i2 · · · im) = (i1 im)(i1 im−1) · · · (i1 i2). (3)

Remark As every permutation in Sn can be written as a product of disjoint cycles, this
formula implies that every permutation in Sn can be written as a product of 2-cycles.

Recall. A permutation α ∈ Sn is said to be even/odd if it can be written as a product of
even/odd number of 2-cycles. We also know that no permutation is both even and odd
and thus Sn gets partitioned into even and odd elements. We denote by An the collection
of all even elements. This is a subgroup that contains half the elements of Sn and for any
odd element a in Sn, we have

Sn = An ∪ aAn.

In particular An is of index 2 in Sn and is thus normal.

Remark. By (3) we have that (i1 · · · im) is a even/odd permutation if and only if
m is odd/even.

Remark Any even permutation in An can be written as a product of even number of
2-cycles. So every permutation in An is a product of elements of one the following forms
(for i, j, r and s distinct)

(i j)(i r) = (i r j)

(i j)(r s) = (i j)(i r)(r i)(r s) = (i r j)(r s i).

It follows that any permutation in An can be written as a product of 3-cycles.

Lemma 4.2

(a) If N � Sn contains a 2-cycle then N = Sn.
(b) If N � An contains a 3-cycle then N = An.

Proof (a) Let (i1 i2) be a 2-cycle of N . Let (j1 j2) be any other 2-cycle of Sn. Let α be a
permutation that maps ik to jk. By Lemma 4.1 we have that (j1 j2) = α(i1 i2)α−1 which
being a conjugate of (i1 i2) is also in N . So every 2-cycle is in N and as Sn is generated
by 2-cycles it follows that N = Sn.

(b) The proof is similar. Let (i1 i2 i3) be a 3-cycle of N and let (j1 j2 j3) be any
other 3-cycle of An. Let α ∈ Sn be a permutation that maps ik to jk. If α ∈ An then
(j1 j2 j3) = α(i1 i2 i3)α−1 is in N as before. If α on the other hand is odd then consider
first instead β = (j1 j2)α ∈ An. The element

(j2 j1 j3) = β(i1 i2 i3)β−1

is then in N and then also (j1 j2 j3) = (j2 j1 j3)−1. So all the 3-cycles are contained in N
and as An is generated by the 3-cycles, it follows that N = An. 2

30



Lemma 4.3 Suppose n ≥ 5 and that {id} 6= N � An. Then |N | > n.

Proof As N 6= {id}, we have some id 6= x ∈ N . It suffices to show then xAn has at least
n elements since then N would contain these elements plus the identity and thus more
than n elements. Write x as a product of disjoint cycles and suppose that the longest
cycle in the product has length m. There are two possibilities.

Case 1. m ≥ 3.

Here x is of the form
x = (i j k · · ·)y

where (i j k · · ·) is one of the cycles of longest length and y is the product of the remaining
cycles. Now take any distinct r, s, t, u, v ∈ {1, 2, . . . , n}. Let α ∈ Sn such that α(i) = r,
α(j) = s and α(k) = t. Notice that by Lemma 4.1, we have

xα
−1

= (r s t ...)yα
−1

.

The same is true if α is replaced by (u v)α (notice that we are using n ≥ 5 here), so
we can assume that α is even. It follows that we can choose r, s, t to be any elements in
{1, 2, . . . , n} that we like. We can now easily find at least n elments in xAn . For example
we can take the elements

(1 2 3 · · ·)y1, (1 2 4 · · ·)y2, (1 3 2 · · ·)y3, (1 4 2 · · ·)y4, · · · , (1 n 2 · · ·)yn

Case 2. m = 2.

As x is even we have to have at least two 2-cycles in the product. It follows that

x = (i j)(k l)y

where (i j), (k l) are two of the 2-cycles and y is the product of the remaining cycles.

Now take any distinct r, s, t, u ∈ {1, 2, . . . , n}. Let α ∈ Sn such that α(i) = r, α(j) = s,
α(k) = t and α(l) = u. Notice that

xα
−1

= (r s)(t u)yα
−1

and the same holds when α is replaced by (r s)α (as (s r) = (r s)). We can therefore
again suppose that α is even. As r, s, t, u can be chosen arbitrarily we can now again
easily find at least n elments in xAn . For example we can take these to be

(1 2)(3 4)y1, (1 2)(3 5)y2, (1 3)(2 4)y3, (1 4)(2 3)y4, · · · , (1 n)(2 3)yn.

So in both cases we have at least n elments in xAn and as N also contains the identity
element, it follows that N has at least n+ 1 elements. 2

Theorem 4.4 The group An is simple for n ≥ 5.

Proof We prove this by induction on n ≥ 5. The induction basis, n = 5, is dealt with
on Sheet 7. Now for the induction step, suppose n ≥ 6 and that we know that An−1 is
simple. Let G(n) = {α ∈ An : α(n) = n}. Notice that G(n) ∼= An−1 and thus simple by
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induction hypothesis. Now let {id} 6= N � An, we want to show that N = An.

Step 1. N ∩G(n) 6= {id}.

We argue by contradiction and suppose that N ∩ G(n) = {id}. This means that the
only element in N that fixes n is id. Now take α, β ∈ N and suppose that α(n) = β(n).
Then α−1β(n) = α−1(α(n)) = n and by what we have just said it follows that α−1β = id
or α = β. Hence, a permutation α in N is determined by α(n) and since there are at
most n values, we have that |N | ≤ n. But his contradicts Lemma 4.3.

Step 2. N = An.

Now {id} 6= N ∩ G(n) � G(n) (by the 2nd Isomorphism Theorem) and since G(n) is
simple by induction hypothesis, it follows that N ∩ G(n) = G(n). In particular, N con-
tains a 3-cycle and thus N = An by Lemma 4.2. 2

II. Group actions

Theorem 4.5 (Cayley). Any group G is isomorphic to a subgroup of Sym (G).

Proof For a ∈ G consider the map La : G→ G, x 7→ ax. Notice that La is bijective with
inverse La−1 and thus La ∈ Sym (G). Now consider the map

φ : G→ Sym (G), a 7→ La.

Notice that (La ◦ Lb)(x) = abx = Lab(x) and thus φ(ab) = Lab = La ◦ Lb = φ(a) ◦ φ(b).
Thus φ is a homomorphism. This homomorphism is injective since if φ(a) = φ(b) then
a = a · 1 = La(1) = Lb(1) = b · 1 = b. Thus G is ismorphic to imφ where the latter is a
subgroup of Sym (G). 2

Definition. Let X be a set and G a group. We say that X is a G-set if we have a right
multiplication from G, i.e. a map

φ : X ×G→ X, (x, g) 7→ x · g

satisfying

(a) x · 1 = x ∀x ∈ X
(b) (x · a) · b = x · (ab) ∀a, b ∈ G and x ∈ X.

Remark. One also says that G acts on X. Notice that x · g is just a notation for
φ(x, g). Notice also that for every a ∈ G we have that the map X → X : x 7→ x · a is a
permutation with inverse X → X : x 7→ x · a−1.

Examples. (1) Let X = G be a group. We can consider this as a G-set with re-
spect to the natural right group multiplication x ∗ g = xg. Clearly x ∗ 1 = x1 = x and
(x ∗ a) ∗ b = (xa)b = x(ab) = x ∗ (ab) by the associativity in G.
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(2) Let H ≤ G and let X be the collection of all the right cosets of H in G. We
can again consider X as a G-set with respect to the natural right group multiplications
Hg∗a = Hga again it is easy to see that Hg∗1 = Hg and (Hg∗a)∗b = Hg∗(ab) = Hgab.

(3) Let G be a group and X = G. We define a group action by G on X by letting
x ∗ a = a−1xa = xa. Then X becomes a G-set as x1 = x and (xa)b = xab.

(4) Let X be the collection of all the subgroups of G. We can consider X as a G-
set with respect to the conjugation action. That is the right multiplication is given by
H ∗ g = g−1Hg = Hg. Again X is a G-set.

Definition. Let X be a G-set. The stabilizer of x ∈ X is

Gx = {g ∈ G : x · g = x}

and the G-orbit of x ∈ X is
x ·G = {x · g : g ∈ G}.

Lemma 4.6 Gx ≤ G

Proof Firstly by condition (a) we have 1 ∈ Gx. Now suppose that a, b ∈ Gx. Using
condition (b) we then have x · (ab) = (x · a) · b = x · b = x and ab ∈ Gx. It remains to
show that Gx is closed under taking inverses. But this follows from

x = x · 1 = x · (aa−1) = (x · a) · a−1 = x · a−1.

This finishes the proof. 2

Theorem 4.7 (The Orbit Stabilizer Theorem). Let X be a G-set and x ∈ X. Let H be
the collection of all the right cosets of Gx in G. The map

Ψ : H → x ·G, Gxa 7→ x · a

is a bijection. In particular
|x ·G| = |H| = [G : Gx].

(In other words the cardinality of the G-orbit generated by x is the same as the cardinality
of the collection of the right cosets of Gx in G).

Proof Ψ is well defined and injective. We have

x · a = x · b⇔ x · ab−1 = x⇔ ab−1 ∈ Gx ⇔ Gxb = Gxa.

As Ψ is clearly surjective, this finishes the proof. 2

Proposition 4.8 Let X be a G-set. The relation

x ∼ y if y ∈ x ·G

is an equivalence relation on X and the equivalence classes are the G-orbits.
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Proof As x = x · 1 it is clear that x ∼ x and we have that ∼ is reflexive. Now suppose
that y = x ·a. Then x = y ·a−1. This shows that ∼ is symmetric. It now remains to show
that ∼ is transitive. But if y = x · a and z = y · b then x · (ab) = (x · a) · b = y · b = z.
Hence we get x ∼ z from x ∼ y and y ∼ z and this shows that ∼ is transitive and thus
an equivalence relation.

Finally x ∼ y iff y ∈ x ·G. Hence the equivalence class containing x is the G-orbit x ·G. 2

Corollary 4.9 Suppose that the G-orbits of X are are xi ·G, i ∈ I. Then

|X| =
∑
i∈I

[G : Gxi
].

Proof We have that X = ∪i∈IxiG where the union in pairwise disjoint. Thus

|X| =
∑
i∈I

|xi ·G| =
∑
i∈I

[G : Gxi
].

Where the final equality follows from the Orbit Stabilizer Theorem.
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5 Finite groups and Sylow Theory

Definition. Let G be a group and x ∈ G. The centralizer of x in G is

CG(x) = {g ∈ G : gx = xg}.

Remark. We are going to see shortly that CG(x) is a stabilizer of x with respect to a
certain action. Hence it will follow that CG(x) is a subgroup of G. This we can also see
more directly.

Conjugacy action and the class equation. Let G be a finite group. We can then
think of G as a G-set where the right multiplication is defined by

x ∗ g = xg = g−1xg.

The G-orbit x ∗ G is then {x ∗ g = xg : g ∈ G} = xG, the conjugacy class of x, and the
stabilizer of x is

Gx = {g ∈ G : x = x ∗ g = g−1xg} = {g ∈ G : xg = gx} = CG(x).

The orbit- stabiliser theorem thus tells us that

|xG| = [G : CG(x)]

We next write G as a disjoint union of G-orbits, that is conjugacy classes:

G = aG1 ∪ aG2 ∪ · · · ∪ aGr︸ ︷︷ ︸
each of size ≥2

∪ bG1 ∪ bG2 ∪ · · · bGs︸ ︷︷ ︸
each of size 1

Recall that Z(G) is the set of all those elements that commute with every element of G
and that this is a normal subgroup of G. Now x ∈ Z(G) if and only if x = g−1xg = xg

for all g ∈ G. It follows that x ∈ Z(G) if and only if it’s conjucacy class {xg : g ∈ G}
consists only of one element x. Therefore Z(G) = {b1, . . . , bs} and

G = Z(G) ∪ aG1 ∪ aG2 ∪ · · · ∪ aGr .

and |G| = |Z(G)| +
∑r

i=1 |aGi |. Using the Orbit-Stabilizer Theorem we can deduce from
this the class equation

|G| = |Z(G)|+
r∑
i=1

[G : CG(ai)]

where the sum is taken over the r conjugacy classes with more than one element (so each
[G : CG(ai)] > 1).

Definition. Let p be a prime. A finite group G is said to be a p-group if |G| = pm

for some m ≥ 0.

Remark. The trivial group G = {1} is a p-group for any prime p.
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Theorem 5.1 If G is a non-trivial finite p-group, then Z(G) is non-trivial.

Proof We use the class equation

|G| = |Z(G)|+
r∑
i=1

[G : CG(ai)]︸ ︷︷ ︸
each ≥2

.

Since 1 6= |G| is of p-power order it follows that |G| and each index [G : CG(ai)] are
divisible by p. From the class equation it then follows that |Z(G)| is divisible by p. In
particular it has at least two elements. 2

Example. The result above does not hold for finite groups in general. For example
Z(S3) = {1} .

Theorem 5.2 (Cauchy). Let G be a finite group with order that is divisible by a prime
p. Then G contains an element of order p.

Remark. From exercise 4 on sheet 3, we know that this is true when G is abelian.

Proof We prove this by induction on |G|. If |G| = 1 then the result is trivial (|G|
is then not divisible by any prime p so the statement will not get contradicted). Now
suppose that |G| ≥ 2 and that the result holds for all groups of smaller order. Consider
the class equation

|G| = |Z(G)|+
r∑
i=1

[G : CG(ai)]︸ ︷︷ ︸
each ≥2

.

If any of the |CG(ai)| is divisible by p, then, as |CG(ai)| < |G|, we can use the induc-
tion hypothesis to conclude that CG(ai) contains an element of order p (and thus G
as well). Thus we can assume that none of |CG(ai)| are divisible by p. But then, as
|G| = [G : CG(ai)] · |CG(ai)|, all the indices [G : CG(ai)] are divisible by p and the class
equation implies that |Z(G)| is divisible by p. But Z(G) is abelian so it follows from the
remark that it then contains an element of order p. 2

Theorem 5.3 Let G be a finite p-group and suppose that |G| = pn. There exist a chain
of normal subgroups of G

{1} = H0 < H1 < . . . < Hn = G

where |Hi| = pi for i = 0, 1, . . . , n.

Proof. We use induction on |G| = pn. If n = 0 then {1} = H0 = G is the chain we want.
Now suppose that n ≥ 1 and that the result holds for all p-groups of smaller order. By
Theorem 5.1, we have that Z(G) is non-trivial and by Cauchy’s Thoerem (the abelian
version suffices) we know that there is a subgroup H1 of Z(G) such that |H1| = p. Notice
that H1 � G (as all the elements of H1 commute with all the elements of G and thus
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gH1 = H1g for all g ∈ G). Now |G/H1| = pn−1 and by induction hypothesis, there is a
normal chain of subgroups

{1} = K0 < K1 < · · · < Kn−1 = G/H1.

By the Correspondence Theorem this chain corresponds to a normal chain of intermediate
subgroups between H1 and G

H1 < H2 < · · · < Hn = G

where Ki−1 = Hi/H1. Then |Hi| = |Ki−1| · |H1| = pi−1 · p = pi and the chain

{1} = H0 < H1 < · · · < Hn = G

is the chain we want. 2.

Remark. In particular this last result tells us that the converse to Lagrange’s Theo-
rem holds when G is a p-group. To see the converse of Lagrange’s Theorem doesn’t hold
in general consider the group A5. This is a simple group with 60 elements that has no
subgroup with 30 elements. This is because a subgroup with 30 elements would have
index 2 and thus be normal contradicting the simplicity of A5.

Definition. Let G be a finite group of order pn · m where p does not divide m. A
subgroup of order pn is called a Sylow p-subgroup of G.

Remark. A more elegant way of saying that H is a Sylow p-subgroup of G is to say
that H is a p-group such that [G : H] is not divisible by p.

We are now going to prove a number of very nice and useful results about these. In
particular we will see that these subgroups always exist and are (for a given group G)
all isomorphic. We will also get some information about the number of the Sylow p-
subgroups. These results, known collectively as the Sylow theorems, are going to be an
important tool to understand the structure of the larger group G.

Theorem 5.4 (1st Sylow Theorem) Let G be a finite group and p a prime number. There
exists a Sylow p-subgroup of G.

Proof We prove this by induction on |G|. If |G| = 1 then {1} is the Sylow p-subgroup
for any prime p and thus the Sylow p-subgroups exist trivially in this case. Suppose now
that |G| ≥ 2, and that the result holds for groups of smaller order. Let p be any prime
and suppose that |G| = pnm where p 6 |m. If n = 0 then the trivial subgroup {1} would
be a Sylow p-subgroup. We can thus assume that n ≥ 1. We use the class equation

|G| = |Z(G)|+
r∑
i=1

[G : CG(ai)]︸ ︷︷ ︸
each ≥2

.

Suppose first that some of [G : CG(ai)] is not divisible by p. Notice that |G| = [G :
CG(ai)] · |CG(ai)| and as p does not divide [G : CG(ai)], whereas pn divides |G|, it follows
that pn divides |CG(ai)|. But |CG(ai)| < |G| and thus by induction hypothesis CG(ai)
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contains a Sylow p-subgroup that is of order pn and thus a Sylow p-subgroup of G as well.

We are then left with the case when all of the indices [G : CG(ai)] are divisible by p.
Then |G| is divisible by p and from the class equation it then follows that p divides the
order of |Z(G)|. By Cauchy’s Theorem (we only need the abelian version) we know that
Z(G) has a subgroup N of order p which has to be normal in G, since Ng = gN for all
g ∈ G. By induction hypothesis, G/N contains a Sylow p-subgroup that is a subgroup
of order pn−1. By the Correspondence Theorem this subgroup is of the form P/N for
some N ≤ P ≤ G. Notice that |P | = |N | · |P/N | = p · pn−1 = pn and thus P is a Sylow
p-subgroup of G. 2

Corollary 5.5 Let G be a group of finite order and let pr be any power of a prime that
divides the order of G. Then there exists a subgroup of order pr.

Proof Suppose that |G| = pnm where p 6 |m. By the first Sylow theorem there is a
subgroup P of order pn and by Theorem 5.3 we know that P has a subgroup of order pr.
2

For the proof of the 1st Sylow Theorems we used arguments that involved counting the ele-
ments of G. For our proofs of the other Sylow theorems we will be counting cosets instead.

Counting cosets If H,K ≤ G and let X be the set of all right cosets of H in G.
Then K acts naturally on X through right multiplication: Ha ∗ x = Hax. This turns X
into a K-set. The next Lemma gives us a useful formula of counting the number of cosets
that belongs to any given K-orbit.

Lemma 5.6 The number of cosets in the K-orbit containing Ha are

|Ha ∗K| = [K : K ∩Ha].

Proof We apply the Orbit-Stablizer Theorem. We need to determine the stablizer of the
coset Ha in K. Now

Hak = Ha ⇔ Haka−1 = H ⇔ aka−1 ∈ H ⇔ k ∈ a−1Ha = Ha

As k was in K to start with, this shows that the stablizer of Ha is K ∩ Ha and the
Orbit-Stabilizer Theorem tells us that |Ha ∗K| = [K : K ∩Ha]. 2

A formula for counting cosets. As before we let X be the set of all right H-cosets
that we consider as a K-set. Suppose that

X = Ha1 ∗K ∪Ha2 ∗K ∪ · · · ∪Ham ∗K

is the partition of X into disjoint K-orbits. Using Lemma 5.6 this implies that

[G : H] = |X|
= |Ha1 ∗K|+ |Ha2 ∗K|+ · · ·+ |Ham ∗K|
= [K : K ∩Ha1 ] + [K : K ∩Ha2 ] + · · ·+ [K : K ∩Ham ].
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Remark. We know from Theorem 5.3 that any Sylow p-subgroup contains a subgroup
of an order that is an arbitrary p-power divisor of |G|. Now we show that the converse
is true. Every subgroup of p-power order is contained in some Sylow p-subgroup. In fact
we prove something much stronger.

Theorem 5.7 Let H ≤ G where H is a subgroup of p-power order. Let P be any Sylow
p-subgroup of G. Then

H ≤ P a

for some a ∈ G.

Proof Suppose that |G| = pnm where p 6 |m. Let X be the collection of all the right P
cosets that we consider as a H-set. By the formula for counting cosets, we have

m = [G : P ] = [H : H ∩ P a1 ] + [H : H ∩ P a2 ] + . . .+ [H : H ∩ P am ] (4)

for some a1, . . . , am ∈ G. We claim that H∩P ai = H for some i = 1, . . . ,m. Otherwise all
the indices on the RHS of (4) would be divisible by p and we would get the contradiction
that m is divisible by p. Hence H ∩ P ai = H for some i ∈ {1, . . . ,m} or equivalently
H ⊆ P ai . 2

The 2nd Sylow theorem is a direct consequence of this.

Theorem 5.8 (2nd Sylow Theorem). Any two Sylow p-subgroup are conjugate. (So they
form a single conjugacy class).

Proof Let P and Q be Sylow subgroups of G. By last theorem we know that

Q ⊆ P a

for some a ∈ G. But these two groups have the same order. Hence we have Q = P a. 2

Remark. The map φ : P → P a, x 7→ xa is an isomorphism and thus P and P a are
isomorphic. So all the Sylow p-subgroups are isomorphic and up to isomorphism we can
talk about the Sylow p-subgroup.

We now move on to the third and the last of the Sylow theorems. This is going to
give us some information on the number of Sylow p-subgroups that is immensely useful
as we will see.

Theorem 5.9 (3rd Sylow Theorem). Let G be a finite group and p a prime. The number
n(p) of Sylow p-subgroups of G satisfies:

(i) n(p) = 1 + pr, for some non-negative integer r.
(ii) n(p) divides |G|.
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Proof (See at the end of this chapter).

Remarks. (1) Suppose that |G| = pnm whre p does not divide m. Let P be a Sy-
low p-subgroup of G. As |G| = pnm = |P | · [G : P ] and as n(p) = 1 + pr divides |G| while
being coprime to p, we must have that n(p) divides m = [G : P ].

(2) Let P be a Sylow p-subgroup of G. The Sylow p-subgroups form a single conjugacy
class

{ a−1Pa : a ∈ G}
The number n(p) of these is one iff all of them are equal to P , i.e. iff P �G.

Example 1. Let G be a group of order 2 · pr where p is an odd prime and r ≥ 1.
By the Sylow theorems there exist a subgroup of order pr that is then of index 2 and
therefore normal. Hence G can’t be simple if it is of order 2pr.

Example 2. Let G be a group of order pq where p and q are primes and p > q. Now the
number n(p) of Sylow p-subgroups, satisfies

n(p) = 1 + pr and n(p) divides |G|/p = q

The only possible n(p) satisfying these criteria is n(p) = 1. It follows that there is only
one subgroup of order p and this must then be normal in G. We have thus shown that
there are no simple groups of order pq.

Example 3. To demonstrate the usefulness of the Sylow theorems, let us see how we can
use them to see that there is no simple group of order 12 = 3 · 22. Firstly we have by the
1st Sylow theorem (or Cauchy’s thm) that there is a subgroup of order 3 and the number
n(3) of these satisfies

n(3) = 1 + 3r and n(3) divides |G|/3 = 4.

There are only two possibilities, n(3) = 1 or n(3) = 4. In the first case there is a normal
subgroup of order 3. Let us look at the latter case. We have 4 groups of order 3 and
therefore 4 · 2 = 8 elements of order 3 (in each of the Sylow 3-subgroups there are two
elements of order 3 and as the intersection of any two of these is {1} we get exactly
4 · 2 = 8 elements of order 3). There remain 4 elements that must form a unique Sylow
2-subgroup Q (which has order 4). Notice that none of the elements of order 3 can be in
Q as 3 does not divide 4. As n(2) = 1 we now have that Q�G.

Example 4. Let p, q be distinct primes. We will see that there is no simple group
of order p2q. We consider two cases. If p > q then n(p) = 1 + pr should divide q and
as p > q this can only happen if n(p) = 1. But in this case we have a normal Sylow
p-subgroup. We can thus assume that p < q. Now

n(q) = 1 + qr divides |G|/q = p2.

If n(q) = 1 we have a normal Sylow q-subgroup, so we can suppose that n(q) > 1. As
q > p the only possibility is that n(q) = p2. We then have

1 + qr = p2 ⇔ qr = p2 − 1 = (p− 1)(p+ 1).
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As the prime q is greater than p, it follows that q divides p + 1 and again as q > p, we
must have q = p + 1. The only two primes that are one apart are 2 and 3. Thus p = 2
and q = 3 and |G| = p2 · q = 12. But by Example 3, there is no simple group of order 12
and we are done.

Remark. We mentioned before a famous result of Burnside, the Burnside’s (p, q)- Theo-
rem. This said that any group G of order pnqm is solvable. This means that there are not
composition factors that are non-abelian. In particular G can’t be non-abelian simple.

Later in the notes and on the exercise sheets we will apply the Sylow theorems to find
all groups of order up to and including 15. We will also see that there is no non-abelian
simple group of order less than 60 (|A5| = 60). Before leaving this section we add another
weapon to our list. This is Poincaré’s Lemma that is often of great help.

Definition. Suppose H ≤ G. The subgroup

HG =
⋂
g∈G

Hg

is called the core of H in G.

Remarks. (1) As H = He is one of the conjugates of H it is clear that HG ≤ H
and we will see later that HG � G as a part of Poincaré’s Lemma. This we can also see
directly. Let a ∈ G then

Ha
G =

⋂
g∈G

Hga =
⋂
b∈G

Hb = HG,

where the last identity holds from the fact that Ga = G.

(2) If N ≤ H and N � G then for all g ∈ G we have N = N g ≤ Hg. It follows
that

N ≤
⋂
g∈G

Hg = HG.

This shows that HG is the largest normal subgroup of G that is contained in H.

Theorem 5.10 Suppose G is a group (possibly infinite) and let H ≤ G such that [G :
H] = n <∞. Then

G/HG
∼= K

for some K ≤ Sn.

Proof Let X = {gH : g ∈ G}. For each a ∈ G, we get a map La : X → X, gH 7→ agH.
Notice that La is bijective with inverse La−1 . Also notice that

La ◦ Lb(gH) = La(bgH) = abgH = Lab(gH).

Now consider the map φ : G→ Sym (X), a 7→ La. We have just seen that Lab = La ◦ Lb
and this implies that φ(ab) = φ(a) ◦ φ(b). Thus φ is a homomorphism. We next identify
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the kernel. We have

φ(a) = La = id ⇔ agH = gH for all g ∈ G
⇔ g−1agH = H for all g ∈ G
⇔ g−1ag ∈ H for all g ∈ G
⇔ a ∈ gHg−1 for all g ∈ G.

Therefore the kernel is
⋂
g∈GH

g−1
=
⋂
a∈GH

a = HG. By the 1st Isomorphism Theorem
we have that HG �G and

G/HG = G/kerφ ∼= imφ

where imφ ≤ Sym (X). As |X| = n we have that Sym (X) ∼= Sn and thus G/HG

isomorphic to a subgroup of Sn. 2.

Corollary 5.11 (Poincaré’s Lemma). Let G be a finite simple group with a subgroup H
such that [G : H] = n > 1. Then

G ∼= K

for some K ≤ Sn. In particular |G| divides |Sn| = n!.

Proof HG is a normal subgroup of G and as HG is contained in H we can’t have HG = G.
Now G is simple and we conclude that HG = {1}. The result now follows from Theorem
5.11 as G/{1} ∼= G. 2

Example 5. Let us give another proof of the fact that there is no simple group of
order 12. We argue by contradiction and suppose that G is a simple groups with 12
elements. By the Sylow theorems we have a subgroup of order 4 and thus of index 3. By
Corollary 5.12 if follows that 12 = |G| divides the 3! = 6. This is absurd.

We end this section by proving the 3rd Sylow Theorem. We need first some prelimi-
nary work.

Definition Let H ≤ G. The normalizer of H in G is

NG(H) = {g ∈ G : Hg = H}.

One can easily check that this is a subgroup of G (in fact it follows also from next remark
as NG(H) turns out to be a stabiliser with respect to a certain G-action) and clearly
H �NG(H).

Remarks. (1) Let X be the set of all subgroups of G. As we have seen before G acts
naturally on X by conjugation and so we can think of X as a G-set with respect to this
action. The stabilizer of the subgroup H is then NG(H) and the Orbit-Stabilizer theorem
tells us that the number of conjugates of H, that is the size of the G orbit {Hg : g ∈ G},
is [G : NG(H)].

(2) Let P be a Sylow p-subgroup of G. By the 2nd Sylow Theorem, we know that
the Sylow p-subgroups form a single conjugacy class {P g : g ∈ G}. By Remark (1) the
total number of all Sylow p-subgroups is then n(p) = [G : NG(P )].
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Lemma 5.12 Let P be a Sylow p-subgroup of G. Then P is the unique Sylow p-subgroup
of NG(P ).

Proof Let Q be any Sylow p-subgroup of NG(P ). By the second Sylow Theorem we have

Q = P a

for some a ∈ NG(P ). But then Q = P a = P since a normalizes P . 2.

Proof of the 3rd Sylow Theorem. Let P be a Sylow p-subgroup of G. Since
the Sylow p-subgroups form a single conjugacy class

{P a : a ∈ G},

we know from the remark above that their number is

n(p) = [G : NG(P )].

In particular n(p) divides |G|. This proves (ii). To prove (i) we need more work. Let
N = NG(P ) and let X be the collection of all the right N cosets of G that we consider as
a P -set. Write X as a disjoint union of P -orbits, say

X = Na1 ∗ P ∪Na2 ∗ P ∪ · · · ∪Nam ∗ P

where we assume that the first orbit Na1 ∗ P is the one containing the coset N · 1 = N
and we can also then assume that a1 = 1 From this we get that

n(p) = |Na1 ∗ P |+ |Na2 ∗ P |+ · · ·+ |Nam ∗ P |
= [P : P ∩Na1 ] + [P : P ∩Na2 ] + · · ·+ [P : P ∩Nam ].

Now notice that P ∩ Nai = P iff P ≤ Nai iff P a−1
i ≤ N . However, by Lemma 5.9, this

happens iff P a−1
i = P that happens iff ai ∈ NG(P ). But then Na = Nai ∈ Nai ∗P and as

the only orbit containing N is Na1 ∗P , it follows that i = 1. (Notice also that a1 ∈ NGP
and thus [P : P ∩ Na1 ] = 1). We conclude from this that [P : P ∩ Nai ] is divisble by p
for i = 2, . . . ,m and that [P : P ∩Na1 ] = 1. Hence n(p) = 1 + pr for some non-negative
integer r. 2
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6 Semidirect products and groups of order ≤ 15

I. Semidirect products.

We will now introduce a generalization of direct products that is very useful for de-
scribing and constructing groups. As with direct products these come in two disguises
internal and external semidirect products.

Notation. Suppose that N is a group and φ : N → N is an automorphism. In this
section we will use bφ for the value of b under φ (instead of φ(b)). This will actually make
things look clearer. We will also operate a composition of two automorphisms from left
to right. Thus

bψ◦φ = (bψ)φ.

Definition. Let G be a group and N � G,H ≤ G. We say that G is the internal
semidirect product of N by H if G = HN and H ∩N = {1}.

Remark. The definition is thus very similar to the definition of an internal direct prod-
uct. The only differenct is that one of the groups H does not have to be normal in general.
When H is normal as well then we get a direct product.

Lemma 6.1 Let G be an internal semidirect product of N by H, then the following hold.

(1) Every element g ∈ G can be written uniquely as g = ab with a ∈ H and b ∈ N .

(2) Let a1, a2 ∈ H and b1, b2 ∈ N . Then

(a1b1) · (a2b2) = (a1a2) · (ba2
1 b2)

Proof (1) If a1b1 = a2b2 then a−1
2 a1 = b2b

−1
1 is in H ∩ N and thus trivial. So a1 = a2

and b1 = b2).

(2) We have
(a1b1) · (a2b2) = (a1a2) · (a−1

2 b1a2b2) = (a1a2) · (ba2
1 b2).

This finishes the proof. 2

Remark. Thus, like for internal direct products, we can treat elements like pairs ab
where a is the H component and b is the N component. Furthermore multiplying two
such elements a1b1 and a2b2 gives us a new element whose H compenent is a1a2 and whose
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N component is ba2
1 b2. It follows that if we know the structure of H and N and if we know

how H acts on N by conjugation, then we know the structure of the semidirect product
G. If you for example had a multiplication table for H and N and you knew how H acts
on N by conjugation then you could write down a multiplication table for G.

Remark. For a ∈ H, let φa : N → N be the conjugation by a. We have seen pre-
viously that this map is an automorphism. Now

xφab = xab = (xa)b = (xφa)φb = xφa◦φb .

Consider the map Ψ : H → Aut (N), a 7→ φa. As Ψ(ab) = φab = φa ◦ φb = Ψ(a) ◦ Ψ(b),
this map is a homomorphism. Notice also

a1b1 · a2b2 = (a1a2) · (ba2
1 b2) = (a1a2) · (bφa2

1 b2) = (a1a2) · (bΨ(a2)
1 b2)

This motivates the following structure.

Definition Let N,H be groups and let Ψ : H → Aut (N) be a homomorphism. The
external semidirect product H nΨ N , of N by H with respect to Ψ, is the cartesian set
product of H and N with the binary operation

(a1, b1) · (a2, b2) = (a1a2, b
Ψ(a2)
1 b2)

H nΨ N is a group. First let us check the associativity. Firstly

[(a1, b1) · (a2, b2)] · (a3, b3) = (a1a2, b
Ψ(a2)
1 b2) · (a3, b3)

= (a1a2a3, (b
Ψ(a2)
1 b2)Ψ(a3)b3)

Since Ψ(a3) ∈ Aut (N) and since Ψ is a homorphism, we get

(b
Ψ(a2)
1 b2)Ψ(a3)b3 = b

Ψ(a2)Ψ(a3)
1 b

Ψ(a3)
2 b3

= b
Ψ(a2a3)
1 b

Ψ(a3)
2 b3.

Then secondly

(a1, b1) · [(a2, b2) · (a3, b3)] = (a1, b1) · (a2a3, b
Ψ(a3)
2 b3)

= (a1a2a3, b
Ψ(a2a3)
1 b

Ψ(a3)
2 b3).

This shows that the associative law holds. To see that (1, 1) is the identity. Notice that
any automorphism maps 1 to itself and that Ψ(1) = id. Thus

(1, 1) · (a, b) = (1 · a, 1Ψ(a)b) = (a, b)

and
(a, b) · (1, 1) = (a · 1, bΨ(1) · 1) = (a, bid · 1) = (a, b).

Finally, the inverse of (a, b) is (a−1, (bΨ(a−1))−1) since

(a, b) · (a−1, (bΨ(a−1))−1) = (a · a−1, bΨ(a−1)(bΨ(a−1))−1) = (1, 1)
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and

(a−1, (bΨ(a−1))−1) · (a, b) = (aa−1, ((bΨ(a−1))−1)Ψ(a)b)

= (1, (bΨ(a−1)Ψ(a))−1b)

= (1, (bΨ(1))−1b)

= (1, (bid)−1b)

= (1, 1).

Remark. Consider an internal semidirect product of N by H and let Ψ : H → Aut (N)
be the homomorphism that maps a to φa where the latter is the automorphism that takes
b to ba. Using the data N,H and Ψ, we can also construct the external semidirect product
H nΨ N . Not surprisingly, the two are isomorphic (see Exercise 1 on Sheet 10).

II. Groups of order less than 16.

In this section (and on the exercise sheets) we play with our new tools and find all
groups of order up to and including 15. We have already shown previously (Exercise 2
on sheet 9) that the only group of order 15 is Z15 and we have no difficulty with groups
of order 1. When p is a prime, there is exactly one group of order p, the cyclic group Zp

of order p. On exercise sheet 8 we also show that there are only two groups of order p2,
namely Zp2 and Zp ⊕ Zp.

Semidirect products of cyclic groups. Suppose that G = HN is an internal semidi-
rect product of a cyclic group N = 〈a〉 by another cyclic group 〈b〉. We have that

ab = ar (5)

for some r ∈ Z. Inductively it follows that ab
n

= ar
n

and then that (am)b
n

= (ab
n
)m =

am
rn

. Thus the structure of G is determined by (5) and the orders of a and b.

We will now introduce an infinite family of groups, many of which will crop up in the list
of groups of orders 1 to 15.

Example.(D2n, the dihedral group of order 2n). Consider a regular n-gon in the com-
plex plane with corners 1, u, u2, . . . , un−1 where u = e2πi/n (draw a figure). The symmetry
group of this regular n-gon is generated by a counter clockwise rotation a of 2π/n around
the origin and the reflection b in the real axis. This can be described explicitly as follows:

a(z) = e2πi/n · z
b(z) = z̄.

Let us calculate

b−1ab(z) = bab(z)

= ba(z̄)

= b(e2πi/n · z̄)

= e−2πi/nz

= a−1(z).
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This means that the symmetry group is a group of order 2n that is a semidirect product
of 〈a〉, a cyclic group of order n, and 〈b〉, a cyclic group of order 2. Furthermore the action
of 〈b〉 on 〈a〉 is determined by ab = a−1. The unique group of order 2n with a normal
cyclic subgroup 〈a〉 of order n, and a cyclic subgroup 〈b〉 where ab = a−1 is called the
dihedral group of order 2n and is denoted D2n.

Theorem 6.2 Let p be an odd prime. There are (up to isomorphism) exactly two groups
of order 2p these are

Z2p and D2p.

Proof By the Sylow theorems (or Cauchy’s thm) there is a subgroup N = 〈a〉 of order
p. Since N is of index 2 it is normal. There is also a group H = 〈b〉 of order 2. Clearly
H ∩N = {1}, since it is a subgroup of both H and N and thus its order divides both 2
and p. So we have that G is a semidirect product of N by H. To determine the group
structure it remains to see how H can act on N . Now

b−1ab = ar

for some 0 ≤ r ≤ p− 1. Using the fact that b is of order 2, we see that

a = b−1(b−1ab)b = b−1arb = (b−1ab)r = ar
2

.

This implies that ar
2−1 = 1 and thus p must divide r2 − 1 = (r − 1)(r + 1). The only

possibilities for this to happen is when r = 1 or r = p − 1. In the first case the group
is abelian and G = 〈ba〉 is a cyclic group of order 2p. (Notice that (ba)2 = a2 6= 1 and
(ba)p = b 6= 1 so the order of ba is 2p by Lagrange’s theorem). In the latter case we have
the relations

ap = 1, b2 = 1, bab−1 = ap−1 = a−1

which gives us D2p as we have seen. 2

Remark. The only orders up to 15 that are not covered by 1, 15, p, p2 and 2p are
8 and 12. These are dealt with on the excercise sheets 9 and 10.

We end by constructing a certain group of order 12, using the external semidirect product.

Example. Let N = 〈a〉 be a cyclic group of order 3 and H = 〈b〉 be a cyclic group
of order 4. The map

φ : N → N, x 7→ x−1

is in Aut (N). The map
Ψ : H → Aut (N), br 7→ φr

is a homomorphism. It is well defined as br = bs ⇒ bs−r = 1⇒ 4|(r − s)⇒ φs−r = id⇒
φr = φs. Consider the external semidirect product T = HnΨN . It is a group of order 12
with a cyclic normal Sylow 3-subgroup of order 3 and a cyclic Sylow 2-subgroup of order 4.

From our study in this chapter and the exercise sheets we can conclude that the groups
of order ≤ 15 are (up to isomorphism)
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order groups
1 {1}
2 Z2

3 Z3

4 Z4, Z2 ⊕ Z2

5 Z5

6 Z6, D6

7 Z7

8 Z8, Z4 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2, D8, Q
9 Z9, Z3 ⊕ Z3

10 Z10, D10

11 Z11

12 Z4 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z3, A4, D12, T
13 Z13

14 Z14, D14

15 Z15
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